Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 384(6691): 87-93, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574149

RESUMEN

Agricultural simplification continues to expand at the expense of more diverse forms of agriculture. This simplification, for example, in the form of intensively managed monocultures, poses a risk to keeping the world within safe and just Earth system boundaries. Here, we estimated how agricultural diversification simultaneously affects social and environmental outcomes. Drawing from 24 studies in 11 countries across 2655 farms, we show how five diversification strategies focusing on livestock, crops, soils, noncrop plantings, and water conservation benefit social (e.g., human well-being, yields, and food security) and environmental (e.g., biodiversity, ecosystem services, and reduced environmental externalities) outcomes. We found that applying multiple diversification strategies creates more positive outcomes than individual management strategies alone. To realize these benefits, well-designed policies are needed to incentivize the adoption of multiple diversification strategies in unison.


Asunto(s)
Agricultura , Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Humanos , Granjas , Suelo
2.
Proc Natl Acad Sci U S A ; 119(15): e2119959119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377782

RESUMEN

Biodiversity-mediated ecosystem services (ES) support human well-being, but their values are typically estimated individually. Although ES are part of complex socioecological systems, we know surprisingly little about how multiple ES interact ecologically and economically. Interactions could be positive (synergy), negative (trade-offs), or absent (additive effects), with strong implications for management and valuation. Here, we evaluate the interactions of two ES, pollination and pest control, via a factorial field experiment in 30 Costa Rican coffee farms. We found synergistic interactions between these two critical ES to crop production. The combined positive effects of birds and bees on fruit set, fruit weight, and fruit weight uniformity were greater than their individual effects. This represents experimental evidence at realistic farm scales of positive interactions among ES in agricultural systems. These synergies suggest that assessments of individual ES may underestimate the benefits biodiversity provides to agriculture and human well-being. Using our experimental results, we demonstrate that bird pest control and bee pollination services translate directly into monetary benefits to coffee farmers. Excluding both birds and bees resulted in an average yield reduction of 24.7% (equivalent to losing US$1,066.00/ha). These findings highlight that habitat enhancements to support native biodiversity can have multiple benefits for coffee, a valuable crop that supports rural livelihoods worldwide. Accounting for potential interactions among ES is essential to quantifying their combined ecological and economic value.


Asunto(s)
Café , Producción de Cultivos , Control de Plagas , Polinización , Biodiversidad
3.
Annu Rev Phytopathol ; 56: 611-635, 2018 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-29995592

RESUMEN

Assessment of crop loss due to multiple diseases and pests (D&P) is a necessary step in designing sustainable crop management systems. Understanding the drivers of D&P development and yield loss helps identify leverage points for crop health management. Crop loss assessment is also necessary for the quantification of D&P regulation service to identify promising systems where ecosystem service provision is optimized. In perennial crops, assessment of crop losses due to D&P is difficult, as injuries can affect yield over years. In coffee, one of the first perennials in which crop loss trials were implemented, crop losses concurrent with injuries were found to be approximately 50% lower than lagged losses that originated following the death of productive branches due to D&P. Crop losses can be assessed by field trials and surveys, where yield reduction factors such as the number of productive branches that have died are quantified, and by modeling, where damage mechanisms for each injury are considered over several years.


Asunto(s)
Café/microbiología , Protección de Cultivos/métodos , Enfermedades de las Plantas/prevención & control , Productos Agrícolas/microbiología , Enfermedades de las Plantas/microbiología
4.
PLoS One ; 12(1): e0169133, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28046054

RESUMEN

The assessment of crop yield losses is needed for the improvement of production systems that contribute to the incomes of rural families and food security worldwide. However, efforts to quantify yield losses and identify their causes are still limited, especially for perennial crops. Our objectives were to quantify primary yield losses (incurred in the current year of production) and secondary yield losses (resulting from negative impacts of the previous year) of coffee due to pests and diseases, and to identify the most important predictors of coffee yields and yield losses. We established an experimental coffee parcel with full-sun exposure that consisted of six treatments, which were defined as different sequences of pesticide applications. The trial lasted three years (2013-2015) and yield components, dead productive branches, and foliar pests and diseases were assessed as predictors of yield. First, we calculated yield losses by comparing actual yields of specific treatments with the estimated attainable yield obtained in plots which always had chemical protection. Second, we used structural equation modeling to identify the most important predictors. Results showed that pests and diseases led to high primary yield losses (26%) and even higher secondary yield losses (38%). We identified the fruiting nodes and the dead productive branches as the most important and useful predictors of yields and yield losses. These predictors could be added in existing mechanistic models of coffee, or can be used to develop new linear mixed models to estimate yield losses. Estimated yield losses can then be related to production factors to identify corrective actions that farmers can implement to reduce losses. The experimental and modeling approaches of this study could also be applied in other perennial crops to assess yield losses.


Asunto(s)
Agricultura/métodos , Coffea/crecimiento & desarrollo , Coffea/microbiología , Plaguicidas , Enfermedades de las Plantas/microbiología , Costa Rica , Productos Agrícolas , Abastecimiento de Alimentos , Modelos Lineales , Modelos Teóricos , Lluvia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...